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Biochar: New purpose not a new material

Pyrolysis, carbonization, and coalification are well establish 

conversion processes with long research histories

Except:

Prior emphasis: 

Conversion of biomass to liquids (bio-oils) or 

gaseous fuels and/or fuel intermediates 

Solid byproduct (biochar) has long been 

considered a “undesirable side product” 
(Titirici et al., 2007)

Used as fuel  

(3000-4000 BC)

Cave Drawings

(>10,000 to 30,000 BC)

Water filtration

(2000 BC)

Charcoal production

(15th century)
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Pyrolysis, carbonization, and coalification are well establish 

conversion processes with long research histories

Except:

Prior emphasis: 

Conversion of biomass to liquids (bio-oils) or 

gaseous fuels and/or fuel intermediates 

Solid byproduct (biochar) has long been 

considered an “undesirable side product” 
(Titirici et al., 2007)

What is new

The use (or purpose) for the creation of 
charred biomass:

Atmospheric C sequestration

Dates to 1980‟s and early 2000‟s
(Goldberg 1985; Kuhlbusch and Crutzen, 1995; Lehmann, 2006)

Used as fuel  

(3000-4000 BC)

Cave Drawings

(>10,000 to 30,000 BC)

Water filtration

(2000 BC)

Climate Change Mitigation

(1980‟s)

Charcoal production

(15th century)

Biochar: New purpose not a new material



Biochar: Black Carbon Continuum

Thermo-chemical conversion products

Graphite
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However, biochar is NOT a new division…

Adapted from Hedges et al., 2000; Elmquist et al., 2006
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Biochar: Soil Application

• The assumed target for biochar has been soil 
application

• Focus has been on “creating” Terra Preta soils

Observations of increased soil fertility and productivity.  

Postulated from „slash and burn‟ historic charcoal additions

• Biochar (BC) Hypothesized also involved in humic acid formation
(Haumaier and Zech, 1995)



However, on the other side:

• Wood distillation plants [1800-1950‟s]

• Wood pyrolysis – source of chemicals and energy prior 
to petroleum

• Some historic plants on US-EPA Superfund site list

• Other charcoal sites

• Not always productive

• Reduced seed germination

• Reduced plant growth

Biochar: Soil Application

(BEGLINGER AND LOCKE, 1957)



Applications date back to the beginning 
of modern science [1800‟s]:

Soil Application… Long History

(LeFroy, 1883)



Applications date back to the beginning 
of modern science [1800‟s]:

Soil Application… Long History

And even earlier…

Fire pits built on soil…

Ancient Egyptians - pyroligneous acid

(bio-oil)

-used for embalming



• Recent compilation of historical and 
recent biochar applications:

Soil Application… Long History

• 50% positive,

• 30% no effect, and

• 20% negative impacts on growth and/or yield 
(Spokas et al., 2011)

• However, should not be used as a basis for 

forecasting outcomes Publication bias
(Møller and Jennions, 2001)



Proposed Biochar Mechanisms

1. Alteration of soil physical-chemical properties

 pH, CEC, decreased bulk density, increased water 
holding capacity

2. Biochar provides improved microbial habitat

3. Sorption/desorption of soil GHG and nutrients

4. Indirect effects on mycorrhizae fungi through 
effects on other soil microbes

 Mycorrhization helper bacteria  produce 
furan/flavoids beneficial to germination of fungal 
spores

Warnock et al (2007) 



Biochar impacts on Soil Microbes & N Cycling

 70+ different biochars evaluated

 Various biomass parent materials

 Hardwood, softwood, corn stover, corn cob, 

macadamia nut, peanut shell, sawdust, algae, 

coconut shell, turkey manure, distillers grain,

chicken feathers, bamboo, coconut shell 

 Represents a cross-sectional sampling of 
available “biochars”

 C content 1  to 84   %

 N content 0.1 to 2.7  %

 Production Temperatures 350 to 850 oC

 Variety of pyrolysis processes

 Fast, slow, hydrothermal, gasification,

and microwave assisted pyrolysis.



Laboratory Biochar Incubations

Soil incubations:

Serum bottle (soil + biochar)

5 g soil mixed with 0.5 g biochar 

(10% w/w) [GHG production]

Field capacity and saturated 

Oxygen & soil sterilization effects

Mason Jar (soil + biochar/isolated)

Looking at impact of biochar 

without mixing with soil
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Biochar isolated or mixed with soil
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Ethylene Impacts

Soil Microbial Impacts

Induces fungal spore germination

Inhibits/reduces rates of nitrification/denitrification

Inhibits CH4 oxidation (methanotrophs)

Involved in the flooded soil feedback 

Both microbial and plant (adventitious root growth)
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Closer look 
at N-

cycling
(hardwood sawdust biochar)
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Putting the pieces together: Not quite a full picture yet…

Ammonium (NH4
+)

Nitrite (NO2
-)

Nitrogen Uptake (plants/microbes)

Nitric Oxide (NO)

Nitrogen Gas (N2)

Nitrous Oxide (N2O)

Nitrification

N2

Mineralization

Organic N

Nitrogen fixation
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Denitrification

Increased 
amounts

Decreased 
amount

However – no consistent trends



Impact of Biochar Volatiles in Soils

• Sorbed BC volatiles could interfere with microbial signaling 
(communication): Releasing or sorb signaling compounds 

• Volatile organic compounds can interfere with microbial processes

• Terpenoids – interfere with nitrification [Amaral et al., 1998; White 1994]

• Furfural + derivatives – inhibits microbial fermentation & nitrification (Couallier et al., 

2006; Datta et al. 2001)

• Benzene, Esters – Also inhibit microbial reactions

• Still ongoing and developing research area in the plant/microbe research area

• Alterations in VOC content could be sensitive indicators of soil 
conditions (Leff and Fierer, 2008)



Conclusions

 Despite the long research history –
 No absolute “biochar” consistent trends 

 Highly variable material

– Production & post-production handling

 Different responses to biochar
 Function of soil ecosystem (microbial linkage) & position on black 

carbon continuum

 Importance of fully documenting methods of creation, 

handling, and properties 
 – Allow future elucidation of factors

 Several inter-related mechanisms

 Biochar does act as a carbon sequestration agent
 As long as biochar has low O:C ratio (Spokas, 2010)



Conclusions

Economics caused the shift from biomass to fossil fuels in the early 

1920‟s:  We at the cusp where environmental stewardship is 

returning the pendulum back to biomass as the source for human‟s 

energy, chemical and agronomic needs 

Research is needed to optimize both:

1. Advanced pyrolysis system development for 

energy and chemical production 

2. Subsequent utilization of biochar in a 

sustainable and environmentally responsible 

manner

"I have but one lamp by which my feet are guided, and that is the lamp of experience. 

I know of no way of judging the future but by the past."   (Patrick Henry, 1775)
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